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Abstract— A typical subsurface environment is heterogeneous, Machine learning provides an alternative to the geostatistical
consists of multiple materials (geologic facies), and is often framework by allowing one to make predictions in the absence
insufficiently characterized by data. The ability to delineate of sufficient data parameterization, without treating geologic

geologic facies and to estimate their properties from sparse .
data is essential for modeling physical and biochemical processesp""rameters as random and, hence, without the need for the

occurring in the subsurface. We demonstrate that the Kernel €rgodicity assumptions. Intimately connected to the field of
Support Vector Machine is a viable and efficient tool for pattern recognition, machine learning refers to a family of

facies delineatio_n, and contrast it with existing geostatistic_al computational algorithms for data analysis that are designed
approaches. To illustrate our approach, and to demonstrate its 1, 5 1omatically tune themselves in response to data. Neural

advantages, we construct a synthetic porous medium consisting wworks [6 le of h | f algorith
of two heterogeneous materials and then estimate boundaries networks [6] are an example of such a class of algorithms

between these materials from a few selected data points. Wethat has found its way into hydrologic modeling. While
also introduce and analyze the use of regression Support Vector versatile and efficient for many important applications, such

Machines to estimate the parameter values between point where ags the delineation of geologic facies [7], the theory of neural

the parameter is sampled. Our analysis shows that the error in patyorks remains to a large extent empirical in this context.
facies delineation by means of Support Vector Machines decreases

logarithmically with increasing sampling density.
d Y J ping Y Recently, we [8] introduced another subset of the machine

learning techniques — the Support Vector Machine (SVM) and
its mathematical underpinning, the Statistical Learning Theory
(SLT) of Vapnik [9]. While similar to neural networks in its

. INTRODUCTION goals, the SVM is firmly grounded in rigorous mathematical

Our knowledge of the spatial distribution of the physicafl‘”alySiS' which allows one not only to assess its performance

properties of geologic formations is often uncertain becausetdft ©© bound the corresponding errors as well. Like other
ubiquitous heterogeneity and the sparsity of data. Geostatisfigdchine learning techniques, the SVM and SLT enable one
has become an invaluable tool for estimating such propertied@¢treat the subsurface environment and its parameters as
points in a computational domain where data are not availabfi€teérministic. Uncertainty associated with insufficient data
as well as for quantifying the corresponding uncertaintg_arametenzaﬂqn is then represented and quantified py treating
Geostatistical frameworks treat a formation’s properties, sugAMPIing locations as a random subset of all possible mea-
as hydraulic conductivityX (x), as random fields that aresSurement Io_catlo_ns. Such a formulation is ideally suited for
characterized by multivariate probability density functions opuPsurface imaging.

equivalently, by their joint ensemble moments. Thigx) is

assumed to vary not only across the physical space (coordinat¥ [8], we used SVMs to locate a boundary between two
x), but also in probability space (this variation may be repré;natenals in a perfectly stratified geologic formation. Such a

sented by another coordinage which is usually Suppressedboundary is by definition either a straight line (in two dimen-
to simplify notation). Whereas spatial moments &f are sions) or a plane (in three dimensions), so that available data

obtained by samplind<(x) in physical space (across), its are always linearly separable. Here we use a ggneralizgtion of
ensemble moments are defined in terms of samples collec§MS, which are known as Kernel SVMs, to delineate highly
in probability space (acrosg). Since in reality only a single |r_regular boundaries between two heterogeneous geologic fa-
realization of a geologic site exists, it is necessary to invoke thi€S from a sparsely sampled parameter.

ergodicity hypothesis in order to substitute the sample spatial ) , o )
statistics, which can be calculated, for the ensemble statistics'Ve formulate the problem of facies delineation in Section II.
which are actually required. Ergodicity cannot be proved arggction Il provides a brief description of the general theory
requires a number of modeling assumptions, e.g., [1, Sec. 9f7Kemel Support Vector Machines, with an emphasis on
and references therein]. One of the most popular geostatistitii" application in subsurface imaging. Kernel SVMs are then

approaches to facies delineation employs discontinuous gdged in Section IV to reconstruct a boundary between two
statistical models, such as the Indicator Kriging (IK) [2], [3]heterogeneous geologic facies from a few data points extracted

[4]. IK has also found its way into image processing [5]. from a randomly generated porous medium. In Section V
we introduce a regression SVM, and propose its sequential
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Il. A PROBLEM OF FACIES DELINEATION These two quantities are related by a probabilistic bound,

Consider the problem of reconstructing a boundary betwe&xp < Remp + C, where the function”’ depends on the
two heterogeneous materials (geologic facies) from parame¥@Pnik - Chervonenkis (VC) dimensia@nd the number of
data, say hydraulic conductivity or electric resistivity megdata points\ [10][11, Ch. 4]. The VC dimension represents
surementsk; = K(x;), collected atN selected locations @ measure of the complexity of the family of functiods
x; = (zi,y:)T, wherei € {1,...,N}. The first step to facies Analysis of the t!ghtnesg of .thIS bound, which whllg providing
delineation consists of analyzing a data histogram to assign@seful theoretical motivation for the SVM described below,
each data point a value of the indicator function, is often too loose to be of much practical significance, is an

active area of research in the field of statistical learning.
1 xX; € My
I(Xi){o x; € M. @
g 2 I1l. SUPPORTVECTORMACHINES
where M, and M, are the two facies. o . The SVM is a relatively recent technique that has attracted

Let Z(x,c) be an estimate of a “true” indicator fieldy great deal of interest due to its excellent performance on a
I(x), whose adjustable parametersare consistent with, and yide range of classification problems, e.g., [11], [10], [12].
determined from, the available dafte;, I(x;)}/_;. One would The theoretical foundation of this technique is grounded in
like to construct an estimate that is as close to the true figkk fact that the maximal margin SVM, which we describe
as possible, i.e., to minimize the difference between the twgs|oy, provides a bound of the expected rigk,, [11, Ch. 6,
|[I—Z||. In general, both the indicator fieldand the choice of Remark 6.7], [13, Chapter 7].
sampling locationg(x;}}Y; can be modeled as random, and The simplest maximal margin SVM deals with linearly
be described by a joint probability distributio(1,x) or, separable data collected from perfectly stratified geologic
equivalently, a joint probability density functig(/, x). Then  media, where different geologic facies are separated by planes
the problem of obtaining the best estimate of the indicatgf, three dimensions) or straight lines (in two dimensions). It
field is equivalent to minimizing the functional is generalized to accommodate arbitrary data sets by means

of Kernel SVMs. Both SVMs and Kernel SVMs are described
R= [I1-21Px0) = [T -TIp(Ix0dlx. @) peron

Unfortunately, since in reality only a single geologic formation
exists, there is no direct way to evaluatél, x). Geostatistical A Linearly separable data
and Statistical Learning techniques provide two alternatives forConsider a boundary given by the straight line, with equa-
evaluating (2). tion
Geostatistical approaches use fienorm in (2), and treat a-x+b=0. (6)

1) the indicator function/ is a random field, and Our goal is to determine the unknown coefficients =

2) the choice of sampling locatior; };,; as determinis (a1,a5)” andb from the data sefx,, I(x:)},. In machine

ue. learning, an algorithm for constructing such a boundary be-

Then the problem of minimizing (2) reduces to the MiNiMizg;een samples from two classes is known as a linear classifier.
tion of the indicator variance

0% = /(I —I)%dP(I) = /(I —I)*p(I)dl. ©))

To approximatep(I), geostatistical approaches assume er-
godicity, i.e. that the sample statistics 6f such as mean
wr, varianceo?, and correlation functiop; computed from
spatially distributed daté/(x;)}X¥, can be substituted for the
ensemble statistics. Furthermore, it is necessary to assume that
these sampling statistics are representative of the whole field.

SLT [9] often uses the.! norm in (2), and treats

1) the indicator function/ as deterministic, and

2) the choice of sampling locations; } Y, as random.
Then the problem of minimizing (2) reduces to the minimiza-
tion of the expected risk

1 1 Fig. 1. A schematic representation of the boundary between two heteroge-
Rexp = 5 \I - I|dP(X) = 5 \I - I|p(x)dx. (4) neous geologic facied/; and M2 (located above and below the boundary,
respectively) in a perfectly stratified geologic formation. Fheand ©® signs

Rather than attempting to estimate probability distributionigdicate the locations where a parameter is sampled and/ = 1 or

; L . e = 0, respectively. A maximum margin linear classifier for displayed samples
such asp(x), from spatially distributed data, statistical learng, <" o the decision boundary or the boundary estimate (solid line), and

ing replaces the expected rigk.., with the empirical risk  the margin (dotted lines).

N
Remp = Z 1I(x;) — T(x:)]. (5) A maximum margin Imgar lcla.ssmer is |Ilustrateq in Fig. 1
2N —~ — the boundary estimate is indicated with the solid line, and



the dotted lines indicate the extent of theargin i.e., the but penalizing the sum of the classification errors, so that the
region within which the boundary could be shifted orthoggroblem becomes the minimization of

nally without misclassifying any of the data samplesijlfand N

ds designate the perpendicular distances from the estimated 1\|a||2 +CZ£Z’ (12)
boundary (solid line) to the nearest data point(s) in materials 2 =

M, and My, respectively, then the size of the margin .(donegubject to the constraints [12, Ch. 2] [14, Section 12.2.1]
lines) isd = d; + ds, and the sample points determining thé
position of the margin are called trsupport vectorsSince (a-x;,+b)J; >1-¢ for ie{l,...,N}.
the lines bounding the margin are parallel to the boundary (6), (13)
their normal is alsa. The maximal margin SVM determinesAS before, introducing Lagrange multipliers, ; > 0 for
the coefficientsa andb in (6) by maximizing the size of this . ' : i =
margin. While any choice of straight line that lies within thé € {1,..., N} gives the Lagrangian
margin provides the same empirical rigk,,,, the maximum 1 N

margin straight line is a principled choice for minimizing the L(a,b,§,7,9) = §|\a||2 =Y vl xi+b0)Ji -1+ &]

expected riskR.x, [13, Section 7.2]. =1
The maximal margin SVM is constructed as follows. ket N N
x+b = +1 be two equations for the dashed lines bounding the +C Z Gi— Z 03 (14)
margin in Fig. 1. Since the margin separates the two materials, =t =t
all data points satisfy either Denoting the optimal values ef andb by a* andb* respec-
tively, the indicator functionJ(x) is given by thedecision
a-x;+b>+1 (7a) function
or f(x) =sign(a* - x + b*). (15)
a-x; +b<—1. (7b) To obtaina* andb*, it is often convenient to use the dual

optimization problem [14, Section 12.2.1]
Defining the indicator function/(x) = 2I(x) — 1, so that N N
J(x) = —1 wheneverI(x) = 0 and J(x) = 1 whenever 1
I(x) = 1, and denotingJ; = J(x;) allows one to combine max Z% 2 szm‘]"‘]j[xi %] (16)
the two inequalities (7) into one, =t ==t

subject to the constraints

(a-xi—|—b)Ji21 for 76{1,,N} (8) N
The inequalities (8) become equalities for tke that are 0<% <C and » Ji=0. (17)
support vectors. Lefla|| = \/a? + a3 denote the Euclidean i=1

length ofa. Since the distancgs, andp, from the coordinate Let v* (i € {1,...,N}) be solutions of (16) — (17). Then

origin to the linesa-x; +b =1 anda-x; + b = —1 are, finding the solutions oOL/da; = 0 for (14) gives

respectively, N

b+ 1 b1 at =Y i (18)
i=1

pr=—7—= —and  pp=—", 9)
Il

he di b h l ; h . Let x4y and x_ denote arbitrary support vectors for which
the distance between these two linges— p;, 1.e., the margin J —1andJ — —1, respectively. Then the constraints (13).

d, is given by 9 which at these points become equalities, give

d=—. (20) 1

all b* = —§a* C(xy+xo). (29)

Thus the SVM can be formulated as a problem of maximizi

d (or, equivalently, minimizing||a||) subject to the linear
constraints (8). Introducing Lagrange multiplieys > 0 for

i € {1,...,N} leads to the Lagrangian N
ied ) grang f(x) = sign (Z yETixi X + b*) . (20)

N .
1 =1
L(a,b,v) = §|\'51||2 > vl xi+0) -1 (11)
1=1

"hus a solution for the decision function (15), and hence the
indicator function, is

B. Kernel SVMs

A solution of this optimization problem definesand b and In most practical problems, boundaries between geologic
thus, in accordance with (6), the boundary between the tfaxcies are significantly more complex than a straight line or
layers, located at the center of the margin. a plane. To account for this geometric complexity, one can
Often, the data are not perfectly linearly separable. deneralize the linear maximum margin SVM by noting that
more general SVM formulation introduces slack variabledata which cannot be separated by a straight line or plane
& > 0 into the optimization, allowing for misclassificationin the two- or three-dimensional space of observation often



become linearly separable (by a hyperplane) when projectaad b* given by (19). Note that the decision function (28)

onto another, usually higher-dimensional space. is expressed in terms of the kern€l without the need for
Let 7 : R® — R™ be a mapping of the:-dimensional explicit mapping onto the feature space.

physical space onto am-dimensional space (known as a Among a wide variety of Mercer kernels, we will consider

feature space) in which the linear SVM can be applied. Athe performance of the polynomial kernel of orger

equation for a hyperplane separating the two materials in the

m-dimensional space is KpLu(x,x') = (x-x'+1)7, (30a)
a-F(x)+b=0 (21) and the sigmoid kernel
where parametera € R™ and b are determined from the Ksic(x,x") = tanh(px - x" + o), (30b)

transformed data s€tF(x;), J;}Y, by solving the quadratic

T . the exponential radial basis function kernel
optimization of the linear SVM (14),

x —x
1 N Kerp(x,x') = exp (—|202|) , (31)
L(a,b,&,7,0) =5 |[all” — D yillas Flxi) +b)Ji — 1+ &)
i=1 and the Gaussian radial basis function kernel
N N A
NN 22 Kann(ex) = (-2 X))
=1 =1

In analogy to (15), the decision function is given by IV, SYNTHETIC EXAMPLE

f(x) =sign(a” - F(x) + b*). (23)  To demonstrate the applicability of SVMs to subsurface

It is linear in the feature space, is nonlinear in the physicin@ding, and to elucidate its relative advantages with respect
(or input) space. to a geostatistical approach, we reconstruct, from a few data

The dual optimization problem (16) is now recast as points selected at random from a uniform distribution, the
boundaries between two heterogeneous geologic facies in a

N N N B . - - . -

1 synthetic porous medium shown in Fig. 2. This synthetic

max E :%‘ D) E , E :%‘%‘Ji‘]j [F(xi) - F(x5)] - (24) example was generated as follows.
1=1

i=1j=1 We start by generating two autocorrelated, weakly sta-
subject to the constraints tionary, and normally distributed processes, representing two
N distinct spatial distributions of log hydraulic conductivity
0<~ <C and Z%Ji:(l (25) Y = InK with the ensemble means of0.1 and 7.0.

= When hydraulic conductivities are expressedcin /day|, this
The key observation here is that the feature space vect Pgrespond§ FO C'f”‘y‘?y a_nd sandy me_lteria_ls, respectively. B.’Oth
enter into the optimization only within an inner product. If aog-conductlylty d!str|bqt|ons havg unit variance and Gaussian
kernel function a}utocorrelatlon with unit correlation scale. We take these two
fields to be mutually uncorrelated, although the methodology
K(x,x') = F(x) F(x) (26) is capable of taking this feature into account. The fields are
generated by the SGSIM code [15] or6@&x 60 grid, using a
L%rid spacing ofl /5 of the log-conductivity correlation length.
'Next, the composite porous medium in Fig. 2 is constructed
glsetting an arbitrary shape of the internal boundary between
Hi€ two materials and by assigning values of log-conductivity
to cells in the domain. Assigning the indicator function (1)
} with a threshold value of 4.0 to each element on the grid
;@)

is available for a specific mapping, the required inner
products may be computed directly from the physical spa
without explicitly performing the potentially computationallyb
expensive mapping into the feature space. Hence the d
optimization (24) may be expressed as

N A
max {Z% ~3 ZZ%’Y;‘JiJjK(Xqu)
=1

results in Fig. 3.

i=1j=1 We use an SVM [12] to reconstruct the boundary between
avoiding explicit computation of the mappirsg. the two geologic_ facies in .Fig. 3 frqm a feyv (randomly)
In analogy to (18) — (20), the decision functighis now Selected da_\ta points. Sampling densmes ranging Mﬁ%
given by (9 data points) t020% (720 data points) were considered.
N Fig. 4 compares the performance of the SVMs whose kernels
. « N are given by the polynomial (PLM), exponential radial basis
f(x) = sign (Z Vi ik xi) +b ) ’ (28) (ERB), Gaussian radial basis (GRB), and sigmoid (SIG) func-
_ =1 ] i tions in (30). For each sampling density, we randomly gener-
with 47 (i € {1,...,N}) defined as a solution of the dualyeq 20 realizations of the locations of data points and counted
optimization problem (27), the number of elements on the grid that were misclassified by
N the SVMs. The error in Fig. 4 represents the average (over 20
a* = ZﬁJi}‘(xi) (29) realizations) number of misclassified elements. One can see

i=1 that the kernels given by the exponential radial basis (ERB)



functions perform best, which is compatible with findings in
a wide variety of other SVM applications.

Figs. 6 and 5 demonstrate the sensitivity to a fitting param-
etero of the SVMs with the exponential radial basis (ERB)
and Gaussian radial basis (GRB) kernels given by (31) and
(32), respectively. One can see that the performance of both
SVMs is relatively insensitive to the choice of (with its
values varying over about two orders of magnitude), when the
sampling density exceed®%. This finding is encouraging,
since the optimal choice of is nontrivial.

4505 | | | T
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Fig. 2. Synthetic data on 60 x 60 grid. Values range between -2.04 and 5 250 _"-\5‘\\ —
9.89. o
G 200F N, -
X =
00 7 R e ——
50 ] ] ] ]
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Fig. 5. Error rates corresponding to SVMs with an ERB kernel (31) and
several values of.
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Fig. 3. Classification of data in Figure 2, obtained by setting a threshold SeTEmeno
value of 4.0. 100 T T e RS
0.0 ] ] ] ]
0.0 2.0 4.0 6.0 8.0 10.0
Sampling density (%)
0.0 | | | | Fig. 6. Error rates corresponding to SVMs with an GRB kernel (32) and
45.0 B . several values of.
400 ., -
S 350 immma ] Figs. 7 and 8 show the geologic facies reconstructed by
T 300 B Etm p :; “““ 7 an ERB SVM witho = 1.0 from 9 and 180 sample points,
S 2501 SIG p= 1.0 QZB 0T respectively. The locations of sample points are indicated by
W 20.0F \.\_\ GRBo — 1.0 ——— - the lighter shades. The comparison of these reconstructions
150 \‘-\—-m\\_‘____‘_ERBU_ 1.0 —-—-— ] with the true field in Fig. 3 shows that even very sparse
100 T T e sampling might be sufficient for the SVMs to capture general
5.0 . . . . trends in the spatial arrangement of geologic facies. However,
0.0 2.0 4.0 6.0 8.0 10.0 the performance of the SVMs on such sparse data sets is
Sampling density (%) highly dependent (i.e., highly variable from one realization to
) _ . . another) on the actual locations of data points. As the sampling
Fig. 4. Error rates corresponding to the SVMs with polynomial (P'-M)density increases, the SVMs capture finer features of the

exponential radial basis (ERB), and Gaussian radial basis (GRB) kernels.

spatial arrangement of geologic facies, and their performance
is less dependent on a sampling realization.
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Fig. 9. Error rates corresponding to the GSA and SVM approaches.

Fig. 7. Classification of data in Fig. 2, obtained by an ERB SVM using 9
sample points@.25% sampling density). T .
ple points(25% sampling ) and depend on the subjective judgement of the practitioner.

V. SUPPORTVECTORREGRESSION

In hydrologic applications, the delineation of geologic facies
from parameter data is often not sufficient. Since many geo-
logic facies are heterogeneous, it is also necessary to assign
parameter values to locations (e.g., elements of a numerical
grid) where data are not available. Geostatistical approaches
achieve this goal througtata interpolationalgorithms, such
as Kriging [15]. SVMs take an alternative route by employing
data regressiorstrategies.

Fig. 8. Classification of data in Fig. 2, obtained by an ERB SVM using 180
sample points§% sampling density).

A. Comparison with a geostatistical approach

We compare the accuracy of the facies reconstruction by
means of the SVM with that obtained by a geostatistical
approach (GSA) described in the Appendix. It is important
to note that this and other geostatistical approaches to facies
delineation assume that the relative volumes occupied by the
wo ma’FenaIS O_btamEd from a'sample are'r(.apresentat!ve of ﬂ?& 10. Regression of 9 sample points25% sampling density) from data
whole field. This assumption Is Usua”y difficult to validate & Figure 2, obtained by an GRBr (= 10.0) SVM regression.
priori.

Fig. 9 shows the comparison of the performance of the GSASVM regression may be viewed as a generalization of
and the SVM with the ERB kernel and = 1.0 consisted the SVM classification introduced in Section Il to delineate
of 20 trials for each of sampling densities. When enoughe boundaries between geologic facies. Eétx, o) be an
measurements are available (i.e., when the sampling densityimate of a “true” parameter field (x), whose adjustable
is large enough), both methods perform equally well, witharametergx are determined from the available parameter data
the SVM being slightly more accurate than the GSA. TwdK,; = K(x;)}Y,. SVM regression aims to minimize the
factors, however, argue strongly in favor of SVMs. First, theglifference between the two, while providing a probabilistic
perform relatively well even on highly sparse data sets (see theund on the accuracy of the estimatorat a randomly drawn
boundary reconstruction frori sampling points in Fig. 7), pointx [11, Sec. 4.5].
on which GSA fails. Second, SVMs are highly automated, Similar to SVM classification in Section Ill, SVM regres-
while GSAs require manual data analysis to construct spat&bn is first introduced for a linear regression and is then
variograms. As a result, the GSAs are highly time consumimgneralized for a nonlinear regression through the use of




{1,...,N}) gives the Lagrangian

N
L(a,0,6,67.4,8,8) = SlJall + Y (6 + &)

=1

N
—Z’Yi(6+§i+Ki—a'Xi—b)

i=1
N ~
—Z’AYi(G‘i‘fi—Krl-a'er'b)
i=1
N N
=D &=y i (38)
i=1 i=1

In analogy with (16), the dual optimization problem is

Fig. 11. Regression of 9 sample poings25% sampling density) from data N N R
in Figure 2, obtained by an ERBr(= 1.0) SVM classification followed by rnax Z — € Z(% + %‘)
an GRB ¢ = 10.0) SVM regression. i=1 i=1
1 N N
] . . 3 Z Z —5)[xi - %] (39)
kernels. For linear regression, we seek to approximate a data i=1j=1
C_ NN Wi i i
set{K; = K(x;)};-, with a linear function subject to the constraints
K(x)=a-x+b. (33) N
0<% <C, 0<% <C > (n—%)=0. (40)
The regression equivalent of the classification functional (12) i=1
is [11, Sec. 6.2] Let v and4F (¢ € {1,...,N}) denote a solution of (39) —
v (40). Then the optimal parametesisandb are given by [13,
1 . Section 9.2
Llall? + O3 Lo K ), (34) !
2 = N
Z 72 - ’Yz (41)
where the pointwise sum of classification errojsZ 1 .52 i=1
in (12) is replaced by pointwise surﬁ:l 1 Le(x;, K;,K) and
of a loss functionL(x, K, K) which measures the error in b~ K —ax — (42)
approximatingK; at x; by K(x;). While it is not the only o 176
choice, we utilize the-insensitive loss function respectively, wherek; andx; in (42) are chosen such that
X 0<y; <C.
Lo(x, K, ) = 0 for |K(x) — K| <e For a non-linear regression, we once again repladey
o |K(x) — K| — ¢ otherwise F(x) to give the regression
(35) K(x)=a - F(x)+b

first used in SVM regression. With this loss function, thand utilize the dual form of the optimization to express the
primal optimization problem for SVM regression is the miniproblem in terms of the kerndl associated with mapping,
mization of giving the regression

N
1 S 5 N
5\|a||2 +CY (&+E) (36) K(x) =Y (v — 4)K(xi, x) + b, (43)
i=1 =1
In addition to the direct use of the nonlinear regression (43),
we explore a two-step procedure. First, we use the SVM to
delineate the geologic facies from a data{gét(x;)}¥ ;. Then

subject to the constraints

(a-x; +b) = K(x)) S e+ & (373) e perform a nonlinear regression (43) on the data subsets
within each facies separately. In the simulations presented
. here, we used the regression SVM [12] with the GBF kernel
K(x;) —(a-x;+b) <e+¢, (37b) (32) ando = 1 for the direct data regression; and the
. classification SVM [12] with the GRB kernel (31) and= 1
wherei € {1,...,N} and§; >0, & > 0. and the regression SVM [12] with the GBF kernel (32) and

Introducing Lagrange multipliersy;,4;,d,,6; > 0 (i € o =1 for the sequential data regression.



Fig. 12. Regression of 180 sample poini§y sampling density) from data Fig. 14. Interpolation of 180 sample point&’% sampling density) from data
in Figure 2, obtained by an GRBr(= 10.0) SVM regression. in Figure 2, obtained by direct Kriging.

Fig. 13. Regression of 180 sample poini§{(sampling density) from data Fig. 15. Interpolation of 180 sample points; sampling density) from data
in Figure 2, obtained by an ERBr(= 1.0) SVM classification followed by in Figure 2, obtained by Kriging with classification.
an GRB ¢ = 10.0) SVM regression.

variogram fitted to the 180 data points and the variogram used

Figs. 10 and 11 compare the performance of the two regrés-construct an underlying reference field is due to the finite
sion strategies for a sparse data set (9 data points resultingnimber of samples and their spatial location.
the sampling density of.25%) shown in Fig. 7 by the pale The second approach, which we call Kriging with classifica-
squares. Figs. 12 and 13 provide a similar comparison fottian, consists of two steps. First, we use the geostatistical facies
denser data set (180 data points, corresponding to a samptiegineation procedure described in the Appendix. Second, we
density of 5%) shown in Fig. 8. As one would expect, thisuse simple Kriging on the two subsets of th&) data set,
comparison shows that the quality of the reconstruction of tleach of which belongs to one of the two facies. This procedure
K field increases with the sampling density. The proposedsults in an isotropic exponential variogram with nugget 0.0,
two-step SVM regression (Figs. 11 and 13) outperforms tsél 0.7 and range 3.357 for the high conductivity facies (the
direct SVM regression (Figs. 10 and 12), capturing some mdd portion of the domain in Fig. 8), and in an isotropic
the main features of th& distribution even from an extremely exponential variogram with nugget 0.035, sill 0.7 and range
sparse (the sampling density @25%) data set. 1.768 for the low conductivity facies (the blue portion of the

Finally, we compare the SVM regressions with two geaiomain in Fig. 8).
statistical approaches, which employ alternative interpolationFigs. 14 and 15 provide th& fields reconstructed with
strategies based on Kriging. The first approach uses simgte simple Kriging and the Kriging with classification, re-
Kriging to interpolate between the0 data points shown in spectively. The Kriging with classification outperforms the
Fig. 8. An isotropic spherical variogram provides the best fiimple Kriging, as is the case with their SVM counterparts.
of the data with the following parameters: nugget = 1.08he comparison of the two SVM approaches (Figs. 12 and
sill = 12.01, and range = 5.261. Note that the synthetic dat&) with the two Kriging approaches (Figs. 14 and 15) gives
set in Figs. 2 and 3 is a realization of the random field slight edge to the latter, at least when an eyeball measure is
with a Gaussian variogram. The discrepancy between thsed. At the same time, it is worthwhile to point out that the



Kriging approaches (especially the Kriging with classification) APPENDIX

are much more labor intensive than their SVM counterparts. 1o evaluate the relative strengths of Kernel SVMs, we
compare their performance with that the geostatistical ap-
proach due to [16]. This approach consists of the following
steps: First, we use Kriging [15] to construct a map of the

We explored the potential of the statistical learning theo§SeMble average of the indicator functigf(x)) from the
ta{l(x;)}}Y,. The ensemble meahx) is the probability

in general, and support vector machines (SVMSs) in particul ; - )
to delineate geologic facies from limited data. This waliat @ pointx lies in Material 1,((x)) = P[x € Mi]. Then

accomplished (i) by reconstructing, from a few data pointg"e define a boundary betwgen the two materials as an ispline
a synthetic randomly generated porous medium consisth@x € M| = ¢, wherec is a number of data points in
of two heterogeneous materials; and (i) by comparing t aterial 1 (or 2) relative to the _total number of data points,
performance of the SVMs with that of the geostatistic&llter @ccounting for data clustering. o
approach [16]. In some cases, this value does not guarantee that the Kriging
Key differences between the SVMs and geostatistics, fil%?t'mate_ 9f the fra_c tion of the total area covered by the low-
: : conductivity material equals the declustered global mean of
pointed out in [8], are - N .
) ) the original indicator data, resulting from the raw data. In
« Since the SVMs do not treat the subsurface environmegiich cases; is set to a value of the Kriged indicator field
as random, they do not require ergodicity and othgfhich allows one to recover a reconstruction that honors the

statistical assumptions that lie at the heart of geostatistigtnpirical relative volumetric fractions of the two materials.
« While geostatistics provides a set of interpolation tools,

the SVMs use regression.

VI. CONCLUSIONS
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